Each question carries 8 Marks. Answer any five questions. Time 2h30m.

1. (a) If T is $\begin{pmatrix} 4 & -3 \\ 3 & -2 \end{pmatrix}$, determine whether T is parabolic or not. If so, find u and v in \mathbb{R}^2 such that T(u) = u and T(v) = u + v.

(b) Suppose A is a parabolic 2×2 -matrix. Then show that there is a subspace V of \mathbb{R}^2 such that T(v) = v for all $v \in V$ and for $w \in \mathbb{R}^2 \setminus V$, the orbits $(T^n(w))_{n>0}$ grow polynomially.

- 2. Let A be given by $\begin{pmatrix} 0 & 1 \\ .5 & 1 \end{pmatrix}$.
 - (a) Find B so that $B^{-1}AB$ is a diagonal matrix.

(b) Let (x_n) be a sequence defined by $(x_n, y_n) = A^n(x_{n-1}, y_{n-1})$ with $x_1 = y_1 = 1$. Then find x_n explicitly and find $\lim \frac{x_{n+1}}{x_n}$ and justify your answer.

- 3. Let A be a 2 × 2-matrix. Define $||A|| = \sup_{||v||=1} ||Av||$ where ||w|| is the Euclidean norm for any vector $w \in \mathbb{R}^2$. Then show that
 - (a) if $|\det(A)| = 1$, then $||A|| \ge 1$ and
 - (b) in general, $||A|| \ge \sqrt{|\det(A)|}$.
- 4. Let α be a real number and let R_{α} be the rotation on the circle S^1 by an angle α . For any $A \subset S^1$, $x \in S^1$ and $n \ge 1$, define $F_A(x,n) = |\{k \mid 0 \le k < n, R_{\alpha}^k(x) \in A\}|$. Then

(a) Show that R_{α} is an isometry on S^1 for some metric equivalent to the Euclidean metric on S^1 .

(b) If A_1 and A_2 are subsets of S^1 , show that $F_{A_1\cup A_2}(x,n) \leq F_{A_1}(x,n) + F_{A_2}(x,n)$ for all $x \in S^1$ and $n \geq 1$ and the equality occurs if A_1 and A_2 are disjoint.

(c) Show that $F_A(x,n) \to \infty$ as $n \to \infty$ for all $x \in S^1$ if the interior of A is non-empty and α is irrational.

- 5. Let $f: S^1 \to S^1$ be an orientation-preserving homeomorphism and F be a lift of f. Then show that
 - (a) F(x+m) = F(x) + m for all $x \in \mathbb{R}^1$ and all $m \in \mathbb{Z}$,
 - (b) F is an increasing map and
 - (c) F is invertible and F^{-1} is a lift of f^{-1} .

- 6. (a) Suppose F: ℝ¹ → ℝ¹ is F(x) = 3x + sin(xπ/2) for all x ∈ ℝ¹. Then determine whether F is a lift of a continuous map of the circle and justify your answer.
 (b) Let f: S¹ → S¹ be an orientation-preserving homeomorphism. Then show that the rotation number of f is a root of unity if and only if f has a periodic orbit.
- 7. Let $f: S^1 \to S^1$ be an orientation-preserving homeomorphism whose rotation number $\rho(f)$ is a root of unity. Then show that all periodic orbits have the same period and find the ordering of any periodic orbit.